SIGGRAPH 2018 「Semantic Soft Segmentation」复现笔记

santa
santa

SIGGRAPH 2018这篇论文主要分为两大部分,第一部分是 DeepLab v2+ResNet101 训练出来用于获取输入图像的 high-level feature 网络,对于输入的 $I = (h, w, 3)$ 图像,为每一个像素点生成一个 128 维的特征向量,因此该网络的输出是 $F = (h, w, 128)$

接下来,使用 $F$ 和 $I$ 进行引导滤波,$F_{filtered} = imguidedfilter(F, I, 10, 0.01)$,在引导滤波这个地方,OpenCV中的 cv2.ximgproc.guided_filter 与原作者使用的 matlab 中实现的 imguidedfilter 有不小区别,于是我对着 matlab 中 imguidedfilter 的实现重写了一下 OpenCV 版的,bluecocoa/imguidedfilter-opencv

在计算完了 $F_{filtered}$ 之后,利用 PCA 将它压缩到 3 维,$F_{PCA} = PCA(F_{filtered}, 3)$,如下图。

santa PCA
santa PCA

继续阅读SIGGRAPH 2018 「Semantic Soft Segmentation」复现笔记